Symbol Demo
Symbols
The document tests symbols available in selected fonts.
Notice: This demo specifically
does not set any fallback font on the formatter for characters that do
not exist in the specific font. You may see characters on the web page
in the following example that do not come through in the PDF. This means
that the font selected does not contain that character. This is by
design.
|
space [x0020] |
! |
exclam [x0021] |
# |
numbersign
[x0023] |
% |
percent [x0025] |
& |
ampersand
[x0026] |
( |
parenleft
[x0028] |
) |
parenright
[x0029] |
+ |
plus [x002B] |
, |
comma [x002C] |
. |
period [x002E] |
/ |
slash [x002F] |
0 |
zero [x0030] |
1 |
one [x0031] |
2 |
two [x0032] |
3 |
three [x0033] |
4 |
four [x0034] |
5 |
five [x0035] |
6 |
six [x0036] |
7 |
seven [x0037] |
8 |
eight [x0038] |
9 |
nine [x0039] |
: |
colon [x003A] |
; |
semicolon
[x003B] |
< |
less [x003C] |
= |
equal [x003D] |
> |
greater [x003E] |
? |
question
[x003F] |
[ |
bracketleft
[x005B] |
] |
bracketright
[x005D] |
_ |
underscore
[x005F] |
{ |
braceleft
[x007B] |
| |
bar [x007C] |
} |
braceright
[x007D] |
¬ |
logicalnot
[x00AC] |
° |
degree [x00B0] |
± |
plusminus
[x00B1] |
× |
multiply
[x00D7] |
÷ |
divide [x00F7] |
ƒ |
florin [x0192] |
Α |
Alpha [x0391] |
Β |
Beta [x0392] |
Γ |
Gamma [x0393] |
Δ |
Delta [x0394] |
Ε |
Epsilon [x0395] |
Ζ |
Zeta [x0396] |
Η |
Eta [x0397] |
Θ |
Theta [x0398] |
Ι |
Iota [x0399] |
Κ |
Kappa [x039A] |
Λ |
Lambda [x039B] |
Μ |
Mu [x039C] |
Ν |
Nu [x039D] |
Ξ |
Xi [x039E] |
Ο |
Omicron [x039F] |
Π |
Pi [x03A0] |
Ρ |
Rho [x03A1] |
Σ |
Sigma [x03A3] |
Τ |
Tau [x03A4] |
Υ |
Upsilon [x03A5] |
Φ |
Phi [x03A6] |
Χ |
Chi [x03A7] |
Ψ |
Psi [x03A8] |
Ω |
Omega [x03A9] |
α |
alpha [x03B1] |
β |
beta [x03B2] |
γ |
gamma [x03B3] |
δ |
delta [x03B4] |
ε |
epsilon [x03B5] |
ζ |
zeta [x03B6] |
η |
eta [x03B7] |
θ |
theta [x03B8] |
ι |
iota [x03B9] |
κ |
kappa [x03BA] |
λ |
lambda [x03BB] |
μ |
mu [x03BC] |
ν |
nu [x03BD] |
ξ |
xi [x03BE] |
ο |
omicron [x03BF] |
π |
pi [x03C0] |
ρ |
rho [x03C1] |
ς |
sigma1 [x03C2] |
σ |
sigma [x03C3] |
τ |
tau [x03C4] |
υ |
upsilon [x03C5] |
φ |
phi [x03C6] |
χ |
chi [x03C7] |
ψ |
psi [x03C8] |
ω |
omega [x03C9] |
ϑ |
theta1 [x03D1] |
ϒ |
Upsilon1
[x03D2] |
ϕ |
phi1 [x03D5] |
ϖ |
omega1 [x03D6] |
• |
bullet [x2022] |
… |
ellipsis
[x2026] |
′ |
minute [x2032] |
″ |
second [x2033] |
⁄ |
fraction
[x2044] |
€ |
Euro [x20AC] |
ℑ |
Ifraktur
[x2111] |
℘ |
weierstrass
[x2118] |
ℜ |
Rfraktur
[x211C] |
ℵ |
aleph [x2135] |
← |
arrowleft
[x2190] |
↑ |
arrowup [x2191] |
→ |
arrowright
[x2192] |
↓ |
arrowdown
[x2193] |
↔ |
arrowboth
[x2194] |
↵ |
carriagereturn
[x21B5] |
⇐ |
arrowdblleft
[x21D0] |
⇑ |
arrowdblup
[x21D1] |
⇒ |
arrowdblright
[x21D2] |
⇓ |
arrowdbldown
[x21D3] |
⇔ |
arrowdblboth
[x21D4] |
∀ |
universal
[x2200] |
∂ |
partialdiff
[x2202] |
∃ |
existential
[x2203] |
∇ |
gradient
[x2207] |
∈ |
element [x2208] |
∅ |
emptyset
[x2205] |
∉ |
notelement
[x2209] |
∋ |
suchthat
[x220B] |
∏ |
product [x220F] |
∑ |
summation
[x2211] |
− |
minus [x2212] |
∗ |
asteriskmath
[x2217] |
√ |
radical [x221A] |
∝ |
proportional
[x221D] |
∞ |
infinity
[x221E] |
∠ |
angle [x2220] |
∧ |
logicaland
[x2227] |
∨ |
logicalor
[x2228] |
∩ |
intersection
[x2229] |
∪ |
union [x222A] |
∫ |
integral
[x222B] |
∴ |
therefore
[x2234] |
∼ |
similar [x223C] |
≅ |
congruent
[x2245] |
≈ |
approxequal
[x2248] |
≠ |
notequal
[x2260] |
≡ |
equivalence
[x2261] |
≤ |
lessequal
[x2264] |
≥ |
greaterequal
[x2265] |
⊂ |
propersubset
[x2282] |
⊃ |
propersuperset
[x2283] |
⊄ |
notsubset
[x2284] |
⊆ |
reflexsubset
[x2286] |
⊇ |
reflexsuperset
[x2287] |
⊕ |
circleplus
[x2295] |
⊗ |
circlemultiply
[x2297] |
⊥ |
perpendicular
[x22A5] |
⋅ |
dotmath [x22C5] |
⌠ |
integraltp
[x2320] |
⌡ |
integralbt
[x2321] |
〈 |
angleleft
[x2329] |
〉 |
angleright
[x232A] |
◊ |
lozenge [x25CA] |
♠ |
spade [x2660] |
♣ |
club [x2663] |
♥ |
heart [x2665] |
♦ |
diamond [x2666] |
|
registerserif
[xF6DA] |
|
trademarkserif
[xF6DB] |
|
radicalex
[xF8E5] |
|
arrowvertex
[xF8E6] |
|
arrowhorizex
[xF8E7] |
|
registersans
[xF8E8] |
|
trademarksans
[xF8EA] |
|
parenlefttp
[xF8EB] |
|
parenleftex
[xF8EC] |
|
parenleftbt
[xF8ED] |
|
integralex
[xF8F5] |
|
parenrighttp
[xF8F6] |
|
parenrightex
[xF8F7] |
|
parenrightbt
[xF8F8] |
✁ |
a1 [x2701] |
✂ |
a2 [x2702] |
✃ |
a202 [x2703] |
✄ |
a3 [x2704] |
☎ |
a4 [x260E] |
✆ |
a5 [x2706] |
✇ |
a119 [x2707] |
✈ |
a118 [x2708] |
✉ |
a117 [x2709] |
☛ |
a11 [x261B] |
☞ |
a12 [x261E] |
✌ |
a13 [x270C] |
✍ |
a14 [x270D] |
✎ |
a15 [x270E] |
✏ |
a16 [x270F] |
✐ |
a105 [x2710] |
✑ |
a17 [x2711] |
✒ |
a18 [x2712] |
✓ |
a19 [x2713] |
✔ |
a20 [x2714] |
✕ |
a21 [x2715] |
✖ |
a22 [x2716] |
✗ |
a23 [x2717] |
✘ |
a24 [x2718] |
✙ |
a25 [x2719] |
✚ |
a26 [x271A] |
✛ |
a27 [x271B] |
✜ |
a28 [x271C] |
✝ |
a6 [x271D] |
✞ |
a7 [x271E] |
✟ |
a8 [x271F] |
✠ |
a9 [x2720] |
✡ |
a10 [x2721] |
✢ |
a29 [x2722] |
✣ |
a30 [x2723] |
✤ |
a31 [x2724] |
✥ |
a32 [x2725] |
✦ |
a33 [x2726] |
✧ |
a34 [x2727] |
★ |
a35 [x2605] |
✩ |
a36 [x2729] |
✪ |
a37 [x272A] |
✫ |
a38 [x272B] |
✬ |
a39 [x272C] |
✭ |
a40 [x272D] |
✮ |
a41 [x272E] |
✯ |
a42 [x272F] |
✰ |
a43 [x2730] |
✱ |
a44 [x2731] |
✲ |
a45 [x2732] |
✳ |
a46 [x2733] |
✴ |
a47 [x2734] |
✵ |
a48 [x2735] |
✶ |
a49 [x2736] |
✷ |
a50 [x2737] |
✸ |
a51 [x2738] |
✹ |
a52 [x2739] |
✺ |
a53 [x273A] |
✻ |
a54 [x273B] |
✼ |
a55 [x273C] |
✽ |
a56 [x273D] |
✾ |
a57 [x273E] |
✿ |
a58 [x273F] |
❀ |
a59 [x2740] |
❁ |
a60 [x2741] |
❂ |
a61 [x2742] |
❃ |
a62 [x2743] |
❄ |
a63 [x2744] |
❅ |
a64 [x2745] |
❆ |
a65 [x2746] |
❇ |
a66 [x2747] |
❈ |
a67 [x2748] |
❉ |
a68 [x2749] |
❊ |
a69 [x274A] |
❋ |
a70 [x274B] |
● |
a71 [x25CF] |
❍ |
a72 [x274D] |
■ |
a73 [x25A0] |
❏ |
a74 [x274F] |
❐ |
a203 [x2750] |
❑ |
a75 [x2751] |
❒ |
a204 [x2752] |
▲ |
a76 [x25B2] |
▼ |
a77 [x25BC] |
◆ |
a78 [x25C6] |
❖ |
a79 [x2756] |
◗ |
a81 [x25D7] |
❘ |
a82 [x2758] |
❙ |
a83 [x2759] |
❚ |
a84 [x275A] |
❛ |
a97 [x275B] |
❜ |
a98 [x275C] |
❝ |
a99 [x275D] |
❞ |
a100 [x275E] |
❡ |
a101 [x2761] |
❢ |
a102 [x2762] |
❣ |
a103 [x2763] |
❤ |
a104 [x2764] |
❥ |
a106 [x2765] |
❦ |
a107 [x2766] |
❧ |
a108 [x2767] |
♣ |
a112 [x2663] |
♦ |
a111 [x2666] |
♥ |
a110 [x2665] |
♠ |
a109 [x2660] |
① |
a120 [x2460] |
② |
a121 [x2461] |
③ |
a122 [x2462] |
④ |
a123 [x2463] |
⑤ |
a124 [x2464] |
⑥ |
a125 [x2465] |
⑦ |
a126 [x2466] |
⑧ |
a127 [x2467] |
⑨ |
a128 [x2468] |
⑩ |
a129 [x2469] |
❶ |
a130 [x2776] |
❷ |
a131 [x2777] |
❸ |
a132 [x2778] |
❹ |
a133 [x2779] |
❺ |
a134 [x277A] |
❻ |
a135 [x277B] |
❼ |
a136 [x277C] |
❽ |
a137 [x277D] |
❾ |
a138 [x277E] |
❿ |
a139 [x277F] |
➀ |
a140 [x2780] |
➁ |
a141 [x2781] |
➂ |
a142 [x2782] |
➃ |
a143 [x2783] |
➄ |
a144 [x2784] |
➅ |
a145 [x2785] |
➆ |
a146 [x2786] |
➇ |
a147 [x2787] |
➈ |
a148 [x2788] |
➉ |
a149 [x2789] |
➊ |
a150 [x278A] |
➋ |
a151 [x278B] |
➌ |
a152 [x278C] |
➍ |
a153 [x278D] |
➎ |
a154 [x278E] |
➏ |
a155 [x278F] |
➐ |
a156 [x2790] |
➑ |
a157 [x2791] |
➒ |
a158 [x2792] |
➓ |
a159 [x2793] |
➔ |
a160 [x2794] |
→ |
a161 [x2192] |
↔ |
a163 [x2194] |
↕ |
a164 [x2195] |
➘ |
a196 [x2798] |
➙ |
a165 [x2799] |
➚ |
a192 [x279A] |
➛ |
a166 [x279B] |
➜ |
a167 [x279C] |
➝ |
a168 [x279D] |
➞ |
a169 [x279E] |
➟ |
a170 [x279F] |
➠ |
a171 [x27A0] |
➡ |
a172 [x27A1] |
➢ |
a173 [x27A2] |
➣ |
a162 [x27A3] |
➤ |
a174 [x27A4] |
➥ |
a175 [x27A5] |
➦ |
a176 [x27A6] |
➧ |
a177 [x27A7] |
➨ |
a178 [x27A8] |
➩ |
a179 [x27A9] |
➪ |
a193 [x27AA] |
➫ |
a180 [x27AB] |
➬ |
a199 [x27AC] |
➭ |
a181 [x27AD] |
➮ |
a200 [x27AE] |
➯ |
a182 [x27AF] |
➱ |
a201 [x27B1] |
➲ |
a183 [x27B2] |
➳ |
a184 [x27B3] |
➴ |
a197 [x27B4] |
➵ |
a185 [x27B5] |
➶ |
a194 [x27B6] |
➷ |
a198 [x27B7] |
➸ |
a186 [x27B8] |
➹ |
a195 [x27B9] |
➺ |
a187 [x27BA] |
➻ |
a188 [x27BB] |
➼ |
a189 [x27BC] |
➽ |
a190 [x27BD] |
➾ |
a191 [x27BE] |
|
a89 [xF8D7] |
|
a90 [xF8D8] |
|
a93 [xF8D9] |
|
a94 [xF8DA] |
|
a91 [xF8DB] |
|
a92 [xF8DC] |
|
a205 [xF8DD] |
|
a85 [xF8DE] |
|
a206 [xF8DF] |
|
a86 [xF8E0] |
|
a87 [xF8E1] |
|
a88 [xF8E2] |
|
a95 [xF8E3] |
|
a96 [xF8E4] |